Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Alzheimers Dement (N Y) ; 10(1): e12440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356471

RESUMO

INTRODUCTION: While Alzheimer's disease (AD) is defined by amyloid-ß plaques and tau tangles in the brain, it is evident that many other pathophysiological processes such as inflammation, neurovascular dysfunction, oxidative stress, and metabolic derangements also contribute to the disease process and that varying contributions of these pathways may reflect the heterogeneity of AD. Here, we used a previously validated panel of cerebrospinal fluid (CSF) biomarkers to explore the degree to which different pathophysiological domains are dysregulated in AD and how they relate to each other. METHODS: Twenty-five CSF biomarkers were analyzed in individuals with a clinical diagnosis of AD verified by positive CSF AD biomarkers (AD, n = 54) and cognitively unimpaired controls negative for CSF AD biomarkers (CU-N, n = 26) using commercial single- and multi-plex immunoassays. RESULTS: We noted that while AD was associated with increased levels of only three biomarkers (MMP-10, FABP3, and 8OHdG) on a group level, half of all AD participants had increased levels of biomarkers belonging to at least two pathophysiological domains reflecting the diversity in AD. LASSO modeling showed that a panel of FABP3, 24OHC, MMP-10, MMP-2, and 8OHdG constituted the most relevant and minimally correlated set of variables differentiating AD from CU-N. Interestingly, factor analysis showed that two markers of metabolism and oxidative stress (24OHC and 8OHdG) contributed independent information separate from MMP-10 and FABP3 suggestive of two independent pathophysiological pathways in AD, one reflecting neurodegeneration and vascular pathology, and the other associated with metabolism and oxidative stress. DISCUSSION: Better understanding of the heterogeneity among individuals with AD and the different contributions of pathophysiological processes besides amyloid-ß and tau will be crucial for optimizing personalized treatment strategies. Highlights: A panel of 25 highly validated biomarker assays were measured in CSF.MMP10, FABP3, and 8OHdG were increased in AD in univariate analysis.Many individuals with AD had increased levels of more than one biomarker.Markers of metabolism and oxidative stress contributed to an AD multianalyte profile.Assessing multiple biomarker domains is important to understand disease heterogeneity.

2.
Int J Geriatr Psychiatry ; 39(1): e6044, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38161287

RESUMO

OBJECTIVES: Determine if biomarkers of Alzheimer's disease and neural injury may play a role in the prediction of delirium risk. METHODS: In a cohort of older adults who underwent elective surgery, delirium case-no delirium control pairs (N = 70, or 35 matched pairs) were matched by age, sex and vascular comorbidities. Biomarkers from CSF and plasma samples collected prior to surgery, including amyloid beta (Aß)42 , Aß40 , total (t)-Tau, phosphorylated (p)-Tau181 , neurofilament-light (NfL), and glial fibrillary acid protein (GFAP) were measured in cerebrospinal fluid (CSF) and plasma using sandwich enzyme-linked immunosorbent assays (ELISAs) or ultrasensitive single molecule array (Simoa) immunoassays. RESULTS: Plasma GFAP correlated significantly with CSF GFAP and both plasma and CSF GFAP values were nearly two-fold higher in delirium cases. The median paired difference between delirium case and control without delirium for plasma GFAP was not significant (p = 0.074) but higher levels were associated with a greater risk for delirium (odds ratio 1.52, 95% confidence interval 0.85, 2.72 per standard deviation increase in plasma GFAP concentration) in this small study. No matched pair differences or associations with delirium were observed for NfL, p-Tau 181, Aß40 and Aß42 . CONCLUSIONS: These preliminary findings suggest that plasma GFAP, a marker of astroglial activation, may be worth further investigation as a predictive risk marker for delirium.


Assuntos
Doença de Alzheimer , Delírio , Humanos , Idoso , Peptídeos beta-Amiloides , Proteínas tau , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores , Delírio/diagnóstico
3.
Sci Rep ; 14(1): 629, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182740

RESUMO

A growing literature suggests that plasma levels of tau phosphorylated at amino acid 217 (pTau217) performs similarly to cerebrospinal fluid (CSF) biomarkers and PET imaging to detect amyloid pathology and to provide diagnostic and prognostic information in Alzheimer's disease (AD), but a significant limiting factor thus far has been a lack of widely available immunoassays. We evaluated a novel pTau217 S-PLEX® assay developed by Meso Scale Discovery (MSD; Rockville, MD) in plasma from 131 individuals with AD confirmed by CSF biomarkers and controls. Technical performance of the assay was excellent with an LLOQ of 1.84 pg/mL and intra/interplate CVs of 5.5% (0.3-15.0%) and 5.7% (range 0.3-13.4%), respectively. The pTau217 plasma assay differentiated AD and controls with an AUC of 0.98 (95% CI 0.96-1.0) and pTau217 levels were 3.9-fold higher in individuals with AD. This performance was significantly better than what was observed for plasma pTau181, performed in parallel, and comparable to published data on existing pTau217 assays. While further clinical validation and head-to-head comparisons are needed to fully establish the role for the novel pTau217 S-PLEX assay, these data demonstrate the utility of the assay to detect AD pathology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Testes Imunológicos , Aminoácidos , Proteínas Amiloidogênicas , Biomarcadores
4.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260620

RESUMO

Alzheimer's disease (AD) and related dementias (ADRD) is a complex disease with multiple pathophysiological drivers that determine clinical symptomology and disease progression. These diseases develop insidiously over time, through many pathways and disease mechanisms and continue to have a huge societal impact for affected individuals and their families. While emerging blood-based biomarkers, such as plasma p-tau181 and p-tau217, accurately detect Alzheimer neuropthology and are associated with faster cognitive decline, the full extension of plasma proteomic changes in ADRD remains unknown. Earlier detection and better classification of the different subtypes may provide opportunities for earlier, more targeted interventions, and perhaps a higher likelihood of successful therapeutic development. In this study, we aim to leverage unbiased mass spectrometry proteomics to identify novel, blood-based biomarkers associated with cognitive decline. 1,786 plasma samples from 1,005 patients were collected over 12 years from partcipants in the Massachusetts Alzheimer's Disease Research Center Longitudinal Cohort Study. Patient metadata includes demographics, final diagnoses, and clinical dementia rating (CDR) scores taken concurrently. The Proteograph™ Product Suite (Seer, Inc.) and liquid-chromatography mass-spectrometry (LC-MS) analysis were used to process the plasma samples in this cohort and generate unbiased proteomics data. Data-independent acquisition (DIA) mass spectrometry results yielded 36,259 peptides and 4,007 protein groups. Linear mixed effects models revealed 138 differentially abundant proteins between AD and healthy controls. Machine learning classification models for AD diagnosis identified potential candidate biomarkers including MBP, BGLAP, and APoD. Cox regression models were created to determine the association of proteins with disease progression and suggest CLNS1A, CRISPLD2, and GOLPH3 as targets of further investigation as potential biomarkers. The Proteograph workflow provided deep, unbiased coverage of the plasma proteome at a speed that enabled a cohort study of almost 1,800 samples, which is the largest, deep, unbiased proteomics study of ADRD conducted to date.

5.
J Alzheimers Dis ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38160357

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complicated condition involving multiple metabolic and immunologic pathophysiological processes that can occur with the hallmark pathologies of amyloid-ß, tau, and neurodegeneration. Metformin, an anti-diabetes drug, targets several of these disease processes in in vitro and animal studies. However, the effects of metformin on human cerebrospinal fluid (CSF) and plasma proteins as potential biomarkers of treatment remain unexplored. OBJECTIVE: Using proteomics data from a metformin clinical trial, identify the impact of metformin on plasma and CSF proteins. METHODS: We analyzed plasma and CSF proteomics data collected previously (ClinicalTrials.gov identifier: NCT01965756, conducted between 2013 and 2015), and conduced bioinformatics analyses to compare the plasma and CSF protein levels after 8 weeks of metformin or placebo use to their baseline levels in 20 non-diabetic patients with mild cognitive impairment (MCI) and positive AD biomarkers participants. RESULTS: 50 proteins were significantly (unadjusted p <  0.05) altered in plasma and 26 in CSF after 8 weeks of metformin use, with 7 proteins in common (AZU1, CASP-3, CCL11, CCL20, IL32, PRTN3, and REG1A). The correlation between changes in plasma and CSF levels of these 7 proteins after metformin use relative to baseline levels was high (r = 0.98). The proteins also demonstrated temporal stability. CONCLUSIONS: Our pilot study is the first to investigate the effect of metformin on plasma and CSF proteins in non-diabetic patients with MCI and positive AD biomarkers and identifies several candidate plasma biomarkers for future clinical trials after confirmatory studies.

6.
Sci Rep ; 13(1): 22406, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104170

RESUMO

Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disorder with contributions from multiple pathophysiological pathways. One of the long-recognized and important features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild-cognitive impairment or dementia from AD (MCI-AD, n = 95; DEM-AD, n = 72), or other causes (MCI-other, n = 77; DEM-other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57). The results revealed changes related to altered glucose metabolism. In particular, two glycolytic enzymes, pyruvate kinase (PKM) and aldolase A (ALDOA), were found to be upregulated in CSF from patients with AD compared to those with other neurological conditions. Increases in full-length PKM and ALDOA levels in CSF were confirmed with immunoblotting. Levels of these enzymes furthermore correlated negatively with CSF glucose in matching CSF samples. PKM levels were also found to be increased in AD in publicly available brain-tissue data. These results indicate that ALDOA and PKM may act as technically-robust potential biomarkers of glucose metabolism dysregulation in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Hidrocefalia de Pressão Normal , Humanos , Doença de Alzheimer/psicologia , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/psicologia , Espectrometria de Massas , Glicólise , Glucose , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
7.
Front Cell Neurosci ; 17: 1156802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663126

RESUMO

A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1-/- NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS.

8.
J Huntingtons Dis ; 12(3): 201-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661892

RESUMO

BACKGROUND: Synaptic changes occur early in patients with Huntington's disease (HD) and in mouse models of HD. An analysis of synaptic changes in HD transgenic sheep (OVT73) is fitting since they have been shown to have some phenotypes. They also have larger brains, longer lifespan, and greater motor and cognitive capacities more aligned with humans, and can provide abundant biofluids for in vivo monitoring of therapeutic interventions. OBJECTIVE: The objective of this study was to determine if there were differences between 5- and 10-year-old OVT73 and wild-type (WT) sheep in levels of synaptic proteins in brain and in neurofilament light chain (NfL) in cerebrospinal fluid (CSF) and plasma. METHODS: Mutant huntingtin (mHTT) and other proteins were measured by western blot assay in synaptosomes prepared from caudate, motor, and piriform cortex in 5-year-old and caudate, putamen, motor; and piriform cortex in 10-year-old WT and OVT73 sheep. Levels of NfL, a biomarker for neuronal damage increased in many neurological disorders including HD, were examined in CSF and plasma samples from 10-year-old WT and OVT73 sheep using the Simoa NfL Advantage kit. RESULTS: Western blot analysis showed mHTT protein expression in synaptosomes from OVT73 sheep was  23% of endogenous sheep HTT levels at both ages. Significant changes were detected in brain levels of PDE10A, SCN4B, DARPP32, calmodulin, SNAP25, PSD95, VGLUT 1, VAMP1, and Na+/K+-ATPase, which depended on age and brain region. There was no difference in NfL levels in CSF and plasma in OVT73 sheep compared to age-matched WT sheep. CONCLUSIONS: These results show that synaptic changes occur in brain of 5- and 10-year-old OVT73 sheep, but levels of NfL in biofluids are unaffected. Altogether, the data support a prodromal disease state in OVT73 sheep that involves the caudate, putamen and cortex.

9.
J Huntingtons Dis ; 12(3): 267-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694372

RESUMO

BACKGROUND: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD postmortem brain and mouse models. OBJECTIVE: The goal of this study was to determine whether total tau and pTau levels are altered in HD. METHODS: Immunohistochemistry, cellular fractionations, and western blots were used to measure total tau and pTau levels in a large cohort of HD and control postmortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau levels in HttQ111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. RESULTS: Our results revealed that, while there was no difference in total tau or pTau levels in HD PFC compared to controls, the levels of tau phosphorylated at S396 were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, total tau or pTau levels were not altered in HttQ111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. CONCLUSIONS: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.


Assuntos
Doença de Huntington , Camundongos , Animais , Humanos , Doença de Huntington/metabolismo , Fosforilação , Serina/metabolismo , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Modelos Animais de Doenças
11.
Res Sq ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37461556

RESUMO

Background: Alzheimer's disease (AD) is a complex heterogenous neurodegenerative disorder, characterized by multiple pathophysiologies, including disruptions in brain metabolism. Defining markers for patient stratification across these pathophysiologies is an important step towards personalized treatment of AD. Efficient brain glucose metabolism is essential to sustain neuronal activity, but hypometabolism is consistently observed in AD. The molecular changes underlying these observations remain unclear. Recent studies have indicated dysregulation of several glycolysis markers in AD cerebrospinal fluid and tissue. Methods: In this study, unbiased mass spectrometry was used to perform a deep proteomic survey of cerebrospinal fluid (CSF) from a large-scale clinically complex cohort to uncover changes related to impaired glucose metabolism. Results: Two glycolytic enzymes, Pyruvate kinase (PKM) and Aldolase A (ALDOA) were found to be specifically upregulated in AD CSF compared to other non-AD groups. Presence of full-length protein of these enzymes in CSF was confirmed through immunoblotting. Levels of tryptic peptides of these enzymes correlated significantly with CSF glucose and CSF lactate in matching CSF samples. Conclusions: The results presented here indicate a general dysregulation of glucose metabolism in the brain in AD. We highlight two markers ALDOA and PKM that may act as potential functionally-relevant biomarkers of glucose metabolism dysregulation in AD.

12.
Mov Disord ; 38(9): 1742-1750, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482941

RESUMO

BACKGROUND: Adaptor protein complex 4-associated hereditary spastic paraplegia (AP-4-HSP) is caused by pathogenic biallelic variants in AP4B1, AP4M1, AP4E1, and AP4S1. OBJECTIVE: The aim was to explore blood markers of neuroaxonal damage in AP-4-HSP. METHODS: Plasma neurofilament light chain (pNfL) and glial fibrillary acidic protein (GFAP) levels were measured in samples from patients and age- and sex-matched controls (NfL: n = 46 vs. n = 46; GFAP: n = 14 vs. n = 21) using single-molecule array assays. Patients' phenotypes were systematically assessed using the AP-4-HSP natural history study questionnaires, the Spastic Paraplegia Rating Scale, and the SPATAX disability score. RESULTS: pNfL levels increased in AP-4-HSP patients, allowing differentiation from controls (Mann-Whitney U test: P = 3.0e-10; area under the curve = 0.87 with a 95% confidence interval of 0.80-0.94). Phenotypic cluster analyses revealed a subgroup of individuals with severe generalized-onset seizures and developmental stagnation, who showed differentially higher pNfL levels (Mann-Whitney U test between two identified clusters: P = 2.5e-6). Plasma GFAP levels were unchanged in patients with AP-4-HSP. CONCLUSIONS: pNfL is a potential disease marker in AP-4-HSP and can help differentiate between phenotypic subgroups. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Complexo 4 de Proteínas Adaptadoras , Paraplegia Espástica Hereditária , Humanos , Complexo 4 de Proteínas Adaptadoras/genética , Paraplegia Espástica Hereditária/genética , Filamentos Intermediários/metabolismo , Fenótipo , Mutação
13.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333415

RESUMO

Background: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives: The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods: Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results: Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.

14.
J Am Soc Mass Spectrom ; 34(4): 649-667, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36912488

RESUMO

The granin neuropeptide family is composed of acidic secretory signaling molecules that act throughout the nervous system to help modulate synaptic signaling and neural activity. Granin neuropeptides have been shown to be dysregulated in different forms of dementia, including Alzheimer's disease (AD). Recent studies have suggested that the granin neuropeptides and their protease-cleaved bioactive peptides (proteoforms) may act as both powerful drivers of gene expression and as a biomarker of synaptic health in AD. The complexity of granin proteoforms in human cerebrospinal fluid (CSF) and brain tissue has not been directly addressed. We developed a reliable nontryptic mass spectrometry assay to comprehensively map and quantify endogenous neuropeptide proteoforms in the brain and CSF of individuals diagnosed with mild cognitive impairment and dementia due to AD compared to healthy controls, individuals with preserved cognition despite AD pathology ("Resilient"), and those with impaired cognition but no AD or other discernible pathology ("Frail"). We drew associations between neuropeptide proteoforms, cognitive status, and AD pathology values. Decreased levels of VGF proteoforms were observed in CSF and brain tissue from individuals with AD compared to controls, while select proteoforms from chromogranin A showed the opposite effect. To address mechanisms of neuropeptide proteoform regulation, we showed that the proteases Calpain-1 and Cathepsin S can cleave chromogranin A, secretogranin-1, and VGF into proteoforms found in both the brain and CSF. We were unable to demonstrate differences in protease abundance in protein extracts from matched brains, suggesting that regulation may occur at the level of transcription.


Assuntos
Doença de Alzheimer , Neuropeptídeos , Humanos , Doença de Alzheimer/patologia , Cromograninas/metabolismo , Cromogranina A/metabolismo , Fragmentos de Peptídeos/metabolismo , Neuropeptídeos/metabolismo , Encéfalo/metabolismo , Biomarcadores , Peptídeo Hidrolases/metabolismo , Peptídeos beta-Amiloides/metabolismo
15.
Front Neurol ; 14: 1069411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937522

RESUMO

Background: The last few years have seen major advances in blood biomarkers for Alzheimer's Disease (AD) with the development of ultrasensitive immunoassays, promising to transform how we diagnose, prognose, and track progression of neurodegenerative dementias. Methods: We evaluated a panel of four novel ultrasensitive electrochemiluminescence (ECL) immunoassays against presumed CNS derived proteins of interest in AD in plasma [phosphorylated-Tau181 (pTau181), total Tau (tTau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP)]. Two sets of banked plasma samples from the Massachusetts Alzheimer's Disease Research Center's longitudinal cohort study were examined: A longitudinal prognostic sample (n = 85) consisting of individuals with mild cognitive impairment (MCI) and 4 years of follow-up and a cross-sectional sample (n = 238) consisting of individuals with AD, other neurodegenerative diseases (OND), and normal cognition (CN). Results: Participants with MCI who progressed to dementia due to probable AD during follow-up had higher baseline plasma concentrations of pTau181, NfL, and GFAP compared to non-progressors. The best prognostic discrimination was observed with pTau181 (AUC = 0.83, 1.7-fold increase) and GFAP (AUC = 0.83, 1.6-fold increase). Participants with autopsy- and/or biomarker verified AD had higher plasma levels of pTau181, tTau and GFAP compared to CN and OND, while NfL was elevated in AD and further increased in OND. The best diagnostic discrimination was observed with pTau181 (AD vs CN: AUC = 0.90, 2-fold increase; AD vs. OND: AUC = 0.84, 1.5-fold increase) but tTau, NfL, and GFAP also showed good discrimination between AD and CN (AUC = 0.81-0.85; 1.5-2.2 fold increase). Conclusions: These new ultrasensitive ECL plasma assays for pTau181, tTau, NfL, and GFAP demonstrated diagnostic utility for detection of AD. Moreover, the absolute baseline plasma levels of pTau181 and GFAP reflect cognitive decline over the next 4 years, providing prognostic information that may have utility in both clinical practice and clinical trial populations.

16.
Alzheimers Dement ; 19(8): 3519-3527, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36815663

RESUMO

INTRODUCTION: High-performing biomarkers measuring the vascular contributions to cognitive impairment and dementia are lacking. METHODS: Using a multi-site observational cohort study design, we examined the diagnostic accuracy of plasma placental growth factor (PlGF) within the MarkVCID Consortium (n = 335; CDR 0-1). Subjects underwent clinical evaluation, cognitive testing, MRI, and blood sampling as defined by Consortium protocols. RESULTS: In the prospective population of 335 subjects (72.2 ± 7.8 years of age, 49.3% female), plasma PlGF (pg/mL) shows an ordinal odds ratio (OR) of 1.16 (1.07-1.25; P = .0003) for increasing Fazekas score and ordinal OR of 1.22 (1.14-1.32; P < .0001) for functional cognitive impairment measured by the Clinical Dementia Rating scale. We achieved the primary study outcome of a site-independent association of plasma PlGF (pg/mL) with white matter injury and cognitive impairment in two of three study cohorts. Secondary outcomes using the full MarkVCID cohort demonstrated that plasma PlGF can significantly discriminate individuals with Fazekas ≥ 2 and CDR = 0.5 (area under the curve [AUC] = 0.74) and CDR = 1 (AUC = 0.89) from individuals with CDR = 0. DISCUSSION: Plasma PlGF measured by standardized immunoassay functions as a stable, reliable, diagnostic biomarker for cognitive impairment associated with substantial white matter burden.


Assuntos
Disfunção Cognitiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores , Disfunção Cognitiva/diagnóstico , Fator de Crescimento Placentário , Estudos Prospectivos , Idoso , Idoso de 80 Anos ou mais
17.
Brain ; 146(5): 2003-2015, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315648

RESUMO

In the field of hereditary spastic paraplegia (HSP), progress in molecular diagnostics needs to be translated into robust phenotyping studies to understand genetic and phenotypic heterogeneity and to support interventional trials. ZFYVE26-associated hereditary spastic paraplegia (HSP-ZFYVE26, SPG15) is a rare, early-onset complex HSP, characterized by progressive spasticity and a variety of other neurological symptoms. While prior reports, often in populations with high rates of consanguinity, have established a general phenotype, there is a lack of systematic investigations and a limited understanding of age-dependent manifestation of symptoms. Here we delineate the clinical, neuroimaging and molecular features of 44 individuals from 36 families, the largest cohort assembled to date. Median age at last follow-up was 23.8 years covering a wide age range (11-61 years). While symptom onset often occurred in early childhood [median: 24 months, interquartile range (IQR) = 24], a molecular diagnosis was reached at a median age of 18.8 years (IQR = 8), indicating significant diagnostic delay. We demonstrate that most patients present with motor and/or speech delay or learning disabilities. Importantly, these developmental symptoms preceded the onset of motor symptoms by several years. Progressive spasticity in the lower extremities, the hallmark feature of HSP-ZFYVE26, typically presents in adolescence and involves the distal lower limbs before progressing proximally. Spasticity in the upper extremities was seen in 64%. We found a high prevalence of extrapyramidal movement disorders including cerebellar ataxia (64%) and dystonia (11%). Parkinsonism (16%) was present in a subset and showed no sustained response to levodopa. Cognitive decline and neurogenic bladder dysfunction progressed over time in most patients. A systematic analysis of brain MRI features revealed a common diagnostic signature consisting of thinning of the anterior corpus callosum, signal changes of the anterior forceps and non-specific cortical and cerebellar atrophy. The molecular spectrum included 45 distinct variants, distributed across the protein structure without mutational hotspots. Spastic Paraplegia Rating Scale scores, SPATAX Disability Scores and the Four Stage Functional Mobility Score showed moderate strength in representing the proportion of variation between disease duration and motor dysfunction. Plasma neurofilament light chain levels were significantly elevated in all patients (Mann-Whitney U-test, P < 0.0001) and were correlated inversely with age (Spearman's rank correlation coefficient r = -0.65, P = 0.01). In summary, our systematic cross-sectional analysis of HSP-ZFYVE26 patients across a wide age-range, delineates core clinical, neuroimaging and molecular features and identifies markers of disease severity. These results raise awareness to this rare disease, facilitate an early diagnosis and create clinical trial readiness.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Pré-Escolar , Paraplegia Espástica Hereditária/genética , Estudos Transversais , Diagnóstico Tardio , Proteínas/genética , Mutação
18.
NMR Biomed ; 36(4): e4868, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36330660

RESUMO

High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR)-based metabolomics has demonstrated its utility in studies of biofluids for various diseases. HRMAS NMR spectroscopy is uniquely well suited for analyzing human blood samples because of the small quantity of samples and minimal preparation required. To develop this methodology into standardized clinical protocols, establishment of the method's quality assurance (QA) and evaluations of its quality control (QC) are critical. This study aims to assess the QA/QC measured from human blood specimens in the form of serum and plasma through within-subject and between-subject comparisons, as well as stability and consistency comparisons over several freezing-thawing cycles of sample storage conditions, and most importantly, the agreement of pooled control samples against individual samples.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos
19.
medRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38196583

RESUMO

Importance: Genetic prion disease is a universally fatal and rapidly progressive neurodegenerative disease for which genetically targeted therapies are currently under development. Preclinical proofs of concept indicate that treatment before symptoms will offer outsize benefit. Though early treatment paradigms will be informed by the longitudinal biomarker trajectory of mutation carriers, to date limited cases have been molecularly tracked from the presymptomatic phase through symptomatic onset. Objective: To longitudinally characterize disease-relevant cerebrospinal fluid (CSF) and plasma biomarkers in individuals at risk for genetic prion disease up to disease conversion, alongside non-converters and healthy controls. Design setting and participants: This single-center longitudinal cohort study has followed 41 PRNP mutation carriers and 21 controls for up to 6 years. Participants spanned a range of known pathogenic PRNP variants; all subjects were asymptomatic at first visit and returned roughly annually. Four at-risk individuals experienced prion disease onset during the study. Main outcomes and measures: RT-QuIC prion seeding activity, prion protein (PrP), neurofilament light chain (NfL) total tau (t-tau), and beta synuclein were measured in CSF. Glial fibrillary acidic protein (GFAP) and NfL were measured in plasma. Results: We observed RT-QuIC seeding activity in the CSF of three E200K carriers prior to symptom onset and death, while the CSF of one P102L carrier remained RT-QuIC negative through symptom conversion. The prodromal window of RT-QuIC positivity was one year long in an E200K individual homozygous (V/V) at PRNP codon 129 and was longer than two years in two codon 129 heterozygotes (M/V). Other neurodegenerative and neuroinflammatory markers gave less consistent signal prior to symptom onset, whether analyzed relative to age or individual baseline. CSF PrP was longitudinally stable (mean CV 10%) across all individuals over up to 6 years, including at RT-QuIC positive timepoints. Conclusion and relevance: In this study, we demonstrate that at least for the E200K mutation, CSF prion seeding activity may represent the earliest detectable prodromal sign, and that its prognostic value may be modified by codon 129 genotype. Neuronal damage and neuroinflammation markers show limited sensitivity in the prodromal phase. CSF PrP levels remain stable even in the presence of RT-QuIC seeding activity.

20.
Brain Commun ; 4(4): fcac155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800899

RESUMO

Plasma-based biomarkers present a promising approach in the research and clinical practice of Alzheimer's disease as they are inexpensive, accessible and minimally invasive. In particular, prognostic biomarkers of cognitive decline may aid in planning and management of clinical care. Although recent studies have demonstrated the prognostic utility of plasma biomarkers of Alzheimer pathology or neurodegeneration, such as pTau-181 and NF-L, whether other plasma biomarkers can further improve prediction of cognitive decline is undetermined. We conducted an observational cohort study to determine the prognostic utility of plasma biomarkers in predicting progression to dementia for individuals presenting with mild cognitive impairment due to probable Alzheimer's disease. We used the Olink™ Proximity Extension Assay technology to measure the level of 460 circulating proteins in banked plasma samples of all participants. We used a discovery data set comprised 60 individuals with mild cognitive impairment (30 progressors and 30 stable) and a validation data set consisting of 21 stable and 21 progressors. We developed a machine learning model to distinguish progressors from stable and used 44 proteins with significantly different plasma levels in progressors versus stable along with age, sex, education and baseline cognition as candidate features. A model with age, education, APOE genotype, baseline cognition, plasma pTau-181 and 12 plasma Olink protein biomarker levels was able to distinguish progressors from stable with 86.7% accuracy (mean area under the curve = 0.88). In the validation data set, the model accuracy was 78.6%. The Olink proteins selected by the model included those associated with vascular injury and neuroinflammation (e.g. IL-8, IL-17A, TIMP-4, MMP7). In addition, to compare these prognostic biomarkers to those that are altered in Alzheimer's disease or other types of dementia relative to controls, we analyzed samples from 20 individuals with Alzheimer, 30 with non-Alzheimer dementias and 34 with normal cognition. The proteins NF-L and PTP-1B were significantly higher in both Alzheimer and non-Alzheimer dementias compared with cognitively normal individuals. Interestingly, the prognostic markers of decline at the mild cognitive impairment stage did not overlap with those that differed between dementia and control cases. In summary, our findings suggest that plasma biomarkers of inflammation and vascular injury are associated with cognitive decline. Developing a plasma biomarker profile could aid in prognostic deliberations and identify individuals at higher risk of dementia in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...